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Abstract

Realized semivariance, computed from intraday positive/negative squared returns,

provides an accurate measure of the upside/downside variations of stock returns. This

paper investigates the role of realized semivariance in pricing the CBOE VIX and VIX

futures, using a realized semivariance-based model. We obtain the closed-form pric-

ing formula for the VIX index and VIX futures prices, and show that the new model

provides superior pricing performance, both in-sample and out-of-sample. We fur-

ther analytically derive the pricing formulas for the upside/downside components of

the VIX (risk-neutral semivariance). Such a decomposition shows that the informa-

tion gains from the conventional unsigned realized variance are concentrated on pric-

ing the downside part of the VIX, while the new realized semivariance-based model

provides a larger and more balanced improvement for both the upside and downside

components of the VIX. Our results provide strong evidence that the spread between

upside/downside variance is the main driver of the asymmetry in return distributions.
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1 Introduction

The Chicago Board Options Exchange (CBOE) VIX index, computed from S&P 500 index
(SPX) options prices, is a model-free measure of the expected average variance for the next
30 days under the risk-neutral measure. CBOE introduced VIX futures in 2004 and VIX
options in 2006, to enable investors to directly trade volatility. Because of a negative corre-
lation1 between changes in the VIX and the SPX, market participants treat VIX derivatives
as an important trading vehicle for reducing exposure to risk. Because of the boom in VIX-
linked products, much academic attention has been devoted to finding an accurate valuation
model for VIX derivatives.

It is well known that realized measures of volatility, computed from high-frequency
intraday data, provide accurate measurements of latent volatility processes. Many studies
have highlighted the importance of realized variance in volatility forecasting2 and deriva-
tives pricing.3 In recent years, advances in variance analysis (Barndorff-Nielsen et al.,
2010) have made it possible to split conventional realized variance into upside and down-
side semivariances, which are respectively obtained by summing the intraday positive and
negative squared returns. Many studies have established that this decomposition enhances
volatility predictions (Patton & Sheppard, 2015), index option pricing (Feunou & Okou,
2019), and highlighted the upside/downside variance spread as a source of the asymmetry
in stock price distributions (Feunou et al., 2011). The main goal of this paper is to inves-
tigate the role of realized semivariance in pricing the CBOE VIX index and VIX futures,
from a decomposition perspective.

The key step in pricing VIX derivatives is to derive the model-implied VIX pricing
formula. The theoretical foundation of the model-free algorithm of the CBOE VIX can be
traced back to Britten-Jones & Neuberger (2000). More recently, Andersen et al. (2015)
argued that the CBOE VIX is actually an approximation of Model-Free Implied Volatility
(MFIV), which is a special case of Corridor Implied Volatility (CIV) without truncations.
Based on this concept, Andersen & Bondarenko (2007) proposed the risk-neutral semivari-
ances constructed by call and put options, respectively. This approach forms the foundation
for decomposing the VIX into upside and downside components. Many empirical studies
have documented the asymmetric effects of these two VIX components in asset pricing.
One prominent example is the study by Feunou et al. (2017), who constructed the up-
side/downside variance risk premium (VRP) based on the difference between risk-neutral

1The correlation between the daily log change of the VIX and the SPX was -73% from 2000 to 2020.
2These include Hansen et al. (2012, 2016), Engle & Gallo (2006), Shephard & Sheppard (2010).
3See e.g. Corsi et al. (2013), Christoffersen et al. (2014), Majewski et al. (2015), Huang et al. (2017),

Tong et al. (2022) for index option pricing, and Huang et al. (2019), Wang & Wang (2021), Tong & Huang
(2021) for VIX derivatives pricing.
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and realized semivariance. They established that the downside VRP is the main component
of the VRP. Dotsis & Vlastakis (2016) found that only the upside VIX component carries a
significant negative risk premium in the cross-section of stock returns, and it subsumes all
relevant information for forecasting future volatility. Other related studies include Kilic &
Shaliastovich (2019), Fu et al. (2016) and Held et al. (2020).

Despite the extensive literature on VIX pricing, little attention has been paid to the
model’s ability to price different VIX components. As mentioned above, the upside and
downside components of the VIX display distinct empirical performance, and these differ-
ences may come from asymmetries in the distribution of the underlying asset. In this paper,
we model the underlying process using a realized semivariance-based model, the general-
ized skew affine realized variance (GSARV) of Feunou & Okou (2019), in which the asset
price features specific upside (good) and downside (bad) variance dynamics. We obtain the
closed-form pricing formulas for both the CBOE VIX index and VIX futures, and show that
models with realized semivariance provide superior pricing performance, both in-sample
and out-of-sample. To identify the source of these improvements, we further analytically
derive the model-implied pricing formulas for both the upside and downside components
of the VIX (i.e., risk-neutral semivariance). Such a decomposition of the VIX shows that
the information gains from the conventional unsigned realized variance are concentrated
on the pricing of the downside part of the VIX, while the new model incorporating signed
realized semivariance provides a larger and more balanced improvement in both the upside
and downside components of the VIX. Our results provide strong evidence that the spread
between upside/downside variance is the main driver of the asymmetry in stock price dis-
tributions.

We contribute to the literature on VIX derivatives pricing with realized measures of
volatility. Huang et al. (2019) were the first to focus on pricing VIX derivatives using real-
ized variance. They used an extended LHARG model (Majewski et al., 2015) to price the
VIX futures and showed that realized variance significantly improves the model’s pricing
performance. Wang & Wang (2021) used the GARV model (Christoffersen et al., 2014)
to price VIX futures. More recently, Tong & Huang (2021) emphasized the importance of
realized variance in pricing VIX options using the realized GARCH model (Hansen et al.,
2012) and the GARV model. Our paper is closely related to that of Qiao et al. (2022),
who focused on the forecasting power of realized semivariance for the VIX term structure.
However, their model specifications did not allow for conditional skewness in the return
distribution, as they imposed Gaussian innovations. We make additional contributions to
this strand of the literature by developing a generalized VIX futures pricing model based on
realized semivariance, and showing that allowing for distinct up/down variance dynamics
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is useful in pricing the CBOE VIX and its futures from a decomposition perspective.
The rest of this paper is organized as follows. In Section 2, we introduce the GSARV

model and its risk-neutral dynamics. In Section 3, we present the theoretical foundations
for the CBOE VIX and its decomposition. Section 4 shows how to analytically derive the
model-implied pricing formulas for the VIX, VIX components, and VIX futures. Section 5
displays the competing models for comparison. Section 6 describes the estimation method.
All of the empirical results are reported in Section 7, including summary statistics, param-
eter estimates, and in-sample and out-of-sample pricing performance. All of the relevant
proofs are given in the appendix.

2 Model

2.1 The Realized Semivariance

Advances in variance analysis have made it possible to split the total quadratic variation
into upside and downside components using intraday returns. According to Barndorff-
Nielsen et al. (2010), the upside/downside realized variances for a given day t are given
by

RVU
t =

nt

∑
j=1

r2
t j
I[rt j>0]

RV D
t =

nt

∑
j=1

r2
t j
I[rt j<0]

where rt j = log
(
St, j/St, j−1

)
is the j-th observation of intraday returns, nt is the number

of observations on day t, and I[∗] is the indicator function. The sum of RVU
t and RV D

t is
the traditional realized variance denoted by RVt . If we assume that the following jump-
diffusion motion

d logSt = µtdt +σtdWt + Jt

where dWt is an increment of standard Brownian motion and Jt = log(St/St−) refers to the
jump component; then when nt goes to infinity, the realized measures will converge to

RVU
t

p→ 1
2

∫ t

t−1
σ

2
s ds+ ∑

t−1≤s≤t
J2

s I[Js>0]

RV D
t

p→ 1
2

∫ t

t−1
σ

2
s ds+ ∑

t−1≤s≤t
J2

s I[Js<0]
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Thus, the difference between RVU
t and RV D

t can be interpreted as a measure of skewness:

RVU
t −RV D

t
p→ ∑

t−1<s≤t
J2

s
(
I[Js>0]− I[Js<0]

)
and if RVU

t −RV D
t < 0, the distribution is left-skewed, and when RVU

t −RV D
t > 0, it is

right-skewed. A more detailed theoretical justification is given by Feunou et al. (2016).

2.2 GSARV Model

We use the GSARV model of Feunou & Okou (2019) to incorporate the realized semivari-
ance into the modeling of stock returns. It is given by

Rt+1 = r̄+(λu−ξu)hu,t+1 +(λd−ξd)hd,t+1 + zu,t+1− zd,t+1

where the innovation to daily log returns Rt+1 = log(St+1/St) consists of two components,
zu,t+1 and zd,t+1, representing the positive and negative shocks, respectively. The com-
ponent z j,t+1, j = {u,d} is assumed to follow a demean non-central χ2 distribution with
conditional variance vart(z j,t+1) = h j,t+1:

z j,t+1 =

√
ω j

2

(
ε

2
j,t+1−1−2ε j,t+1

√
h j,t+1−ω j

2ω j

)
, ε j,t+1

iid∼ N(0,1)

Therefore, the conditional variance ht+1 for daily log return Rt+1 has two components:

ht+1 ≡ vart (Rt+1) = hu,t+1 +hd,t+1

which can be interpreted as good and bad stock market volatilities, and the parameters λu

and λd represents the market price of upside/downside risk4. The conditional skewness of
log returns is time-varying and given by

skewt (Rt+1) =
h−3/2

t√
2

[
3
√

ωu
(
hu,t−hd,t

)
+3(
√

ωu−
√

ωd)hd,t−
(

ω
3/2
u −ω

3/2
d

)]
.

Therefore, two sources of conditional asymmetry emerge: i) the discrepancy between non-
normality in good and bad shock distributions

√
ωu−

√
ωd and ii) the difference between

upside and downside variance hu,t−hd,t .
Realized semivariance, RVj,t , is linked to the conditional variance through the following

4The reason is that the expected return is given by Et (exp(Rt+1)) = exp
(
r+λuhu,t+1 +λdhd,t+1

)
. Please

see Feunou & Okou (2019, Equation 9) for more details.
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measurement equation:

RVj,t = h j,t +σ j

[(
v j,t− γ j

√
h j,t−ω j

)2
−1− γ

2
j
(
h j,t−ω j

)]
, v j,t

iid∼ N(0,1)

This also introduces the volatility specific shock v j,t , which can be used to update the
dynamics of each component of the conditional variances:

h j,t+1−ω j = ϖ j +β j(h j,t−ω j)+α j

(
v j,t− γ j

√
h j,t−ω j

)2

where the parameter γ j captures the nonlinear impact of a volatility shock on RV j
t . The

dependence for different innovations is specified as

Et
[
εu,t+1εd,t+1

]
= 0,

Et
[
vu,t+1vd,t+1

]
= 0,

Et
[
ε j,t+1v j,t+1

]
= ρ j.

2.3 Risk Neutralization

Feunou & Okou (2019) proposed the following exponential pricing kernel to risk-neutralize
the GSARV model:

Mt,t+1 = M(u)
t,t+1M(d)

t,t+1

where

M( j)
t+1 =

exp
(

θ
(1 j)
1t ε j,t+1 +θ

(1 j)
2 ε2

j,t+1 +θ
(2 j)
1t v j,t+1 +θ

(2 j)
2 v2

j,t+1

)
Et

[
exp
(

θ
(1 j)
1t ε j,t+1 +θ

(1 j)
2 ε2

j,t+1 +θ
(2 j)
1t v j,t+1 +θ

(2 j)
2 v2

j,t+1

)]
for j = {u,d}. They showed that the risk-neutral dynamics of the GSARV model are given
by

Rt+1 = r̄∗−ξ
∗
u h∗u,t+1−ξ

∗
d h∗d,t+1 + z∗u,t+1− z∗d,t+1

h∗j,t+1−ω
∗
j = ϖ

∗
j +β j

(
h∗j,t−ω

∗
j
)
+α

∗
j

(
v∗j,t− γ

∗
j

√
h∗j,t−ω∗j

)2

Feunou & Okou (2019) did not explicitly derive the measurement equation linking the RV j
t

to h∗j,t in risk-neutral measure. In Appendix E, we show that it has the following expression:

RV ∗j,t = h∗j,t +σ
∗
j

[(
v∗j,t− γ

∗
j

√
h∗j,t−ω∗j

)2
−1− γ

∗2
j
(
h∗j,t−ω

∗
j
)]
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where RV ∗j,t is defined by RV ∗j,t ≡ ζ ∗j +φ∗j RVj,t such that EQ
t−1(RV ∗j,t) = h∗j,t , so the param-

eters ζ ∗j and φ∗j control the magnitude of the VRP. Then a measure of the unconditional
VRP is simply given by

VRP j ≡ EP (RV ∗j,t
)
−EP (RVj,t

)
= ζ

∗
j +
(
φ
∗
j −1

)
EP (RVj,t

)
.

Theoretically, we expect investors to like good uncertainty (because it increases the poten-
tial for substantial gains) but dislike bad uncertainty (as it increases the likelihood of severe
losses), which means that VRPu is negative and VRPd is positive.

3 The CBOE VIX and its Decomposition

Since 2003, the VIX index reported by CBOE has shifted from Black-Scholes implied
volatility to model-free implied volatility (MFIV), which does not rely on a particular op-
tion pricing model. As shown in Jiang & Tian (2005), the VIX is designed to approximate
MFIV, as follows:(

VIX
100

)2

× T
365

→ MFIV≡ 2erT
∫ +∞

0

M0(K)

K2 dK.

where T is the number of (calendar) days to maturity, r is the associated risk-free rate, and
M0 (K) is the price for an out-of-the-money (OTM) option. According to the CBOE white
paper5, the CBOE VIX is a weighted portfolio of OTM calls and puts, given by(

VIX
100

)2

× T
365

= 2erT
N

∑
j=1

∆K j

K2
j

M0
(
K j
)

︸ ︷︷ ︸
Discrete Approximation

−
[

F
K f
−1
]2

︸ ︷︷ ︸
Correction Term

(1)

where F is the forward index level, K f is the first strike below F , Ki is the strike price
of the i-th OTM option, ∆Ki is the interval between strike prices, M0 (Ki) is the price for
each option using the midpoint of the bid-ask spread. The second term in Equation (1)
adjusts for the lack of clean separation between the put and call options, arising from the
discrepancy between K f and the forward price.6 To obtain the VIX index for a specific
maturity, e.g., 30 days, CBOE uses the interpolation of volatility calculated with near-term
and next-term options. Therefore, the targeted MFIV used in CBOE is an integral with
respect to the prices of OTM options.

5https://cdn.cboe.com/resources/futures/vixwhite.pdf
6In Appendix A, we provide a more detailed description of how the correction term emerges.
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3.1 MFIV: Theoretical Arguments

Let Ft be a martingale process in risk-neutral measure, defined as the forward price Ft =

Ster(T−t). Then according to Bakshi & Madan (2000) and Carr & Madan (2001), for any
function g(F) whose second derivative g′′(F) is continuous almost everywhere, we have

EQ
0 [g(FT )]−g(F0) = erT

∫ F0

0
g′′(K)P0(K)dK + erT

∫
∞

F0

g′′(K)C0(K)dK

= erT
∫ +∞

0
g′′(K)M0(K)dK (2)

where EQ
0 (·) takes the expectation under risk-neutral measure Q, and P0(K) and C0(K) are

the current prices of OTM puts and calls. The last equality is obtained through a put-call
parity with M0(K)≡min [P0(K),C0(K)]. In addition, when we take g(F) = log(F), MFIV
is related to an expectation linked to the future cumulative log return:

MFIV≡ 2erT
∫ +∞

0

M0(K)

K2 dK =−2EQ
0 [log(FT/F0)] . (3)

If we assume that there is a pure diffusion process for the martingale process Ft , i.e.

dFt/Ft = σtdWt , (4)

where Wt is a standard Brownian motion and σt is a strictly positive, càdlàg (i.e., right-
continuous with left limits) stochastic volatility process, then by Ito’s Lemma, we have

EQ
0 [g(FT )]−g(F0) =

1
2
EQ

0

[∫ T

0
g′′ (Ft)F2

t σ
2
t dt
]

(5)

When g(F) = log(F), combining Equation (2) and (5) yields

EQ
0 [log(FT/F0)] =−

1
2
EQ

0

[∫ T

0
σ

2
t dt
]
=−erT

∫ +∞

0

M0(K)

K2 dK.

Thus, if the price follows the pure diffusion process in Equation (4), the VIX index reported
by CBOE approximates the MFIV defined as the expected total return variation.

MFIV = EQ
0

[∫ T

0
σ

2
t dt
]

(6)
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3.2 VIX Decomposition: Risk-Neutral Semivariance

To decompose the CBOE VIX index (or MFIV), we resort to the definition of corridor
implied volatility (CIV) proposed by Andersen et al. (2015)

CIV≡ 2erT
∫ BH

BL

M0(K)

K2 dK

A special case of CIV is when the barriers (BH ,BL) take (F0,∞) or (0,F0), we have

CIVU ≡ 2erT
∫

∞

F0

M0(K)

K2 dK = 2erT
∫

∞

F0

C0(K)

K2 dK (7)

CIVD ≡ 2erT
∫ F0

0

M0(K)

K2 dK = 2erT
∫ F0

0

P0(K)

K2 dK (8)

These two measures are proposed by Andersen & Bondarenko (2007). As MFIV can be
defined as CIV when the barriers (BH ,BL) take (0,∞), we have the following decomposi-
tion

MFIV = CIVU +CIVD

An interesting finding is that CIVU is calculated only from OTM call options and CIVD

only from OTM put options. Because the prices of call and put options reflect investors’
expectations of future upward and downward market conditions, respectively, CIVU and
CIVD may be interpreted as the upside and downside components of MFIV. To provide a
deeper insight into what CIVU actually measures, let g(F) =

[
F
F0
−1− ln F

F0

]
I{F≥F0} and

plug it into Equation (2). By doing so, we have

CIVU = 2EQ
0

[(
FT

F0
−1− ln

FT

F0

)
I{FT≥F0}

]
(9)

and for CIVD, we can take g(F) =
(

F
F0
−1− ln F

F0

)
I{F≤F0}, then it becomes

CIVD = 2EQ
0

[(
FT

F0
−1− ln

FT

F0

)
I{FT≤F0}

]
. (10)

When Ft follows the diffusion process in Equation (4), combining Equations (5) and (9 or
10) yields

CIVU = EQ
0

[∫ T

0
σ

2
t I[Ft≥F0]dt

]
(11)

CIVD = EQ
0

[∫ T

0
σ

2
t I[Ft≤F0]dt

]
(12)
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Therefore, CIVU (or CIVD) measures the expectation of the total upside (or downside) re-
turn variation when the instantaneous cumulative return logFt/F0 is positive (or negative).

In practice, the upside/downside component of MFIV (called risk-neutral semivari-
ance), denoted by VIX2

U and VIX2
D, can be approximated from Equations (7) and (8) by

the following portfolio of OTM options:7(
VIXU

100

)2

× T
365

≡ 2erT
N

∑
j=1

∆K j

K2
j

C0
(
K j
)
→ CIVU (13)

(
VIXD

100

)2

× T
365

≡ 2erT
N

∑
j=1

∆K j

K2
j

P0
(
K j
)
→ CIVD (14)

However, due to the correction term in the computation of the CBOE VIX as in Equation
(1), the sum of VIX2

U and VIX2
D is not exactly equal to VIX2, and we instead use ṼIX

2
U

and ṼIX
2
D obtained from the following scaling procedure:

ṼIX
2
U = VIX2×

VIX2
U

VIX2
U +VIX2

D
(15)

ṼIX
2
D = VIX2× VIX2

D

VIX2
U +VIX2

D
(16)

4 Model-Implied Pricing Formulas

4.1 VIX Pricing Formula

For a model with Gaussian innovations to daily log returns, one could directly use the
formula (6) to derive the model-implied VIX index, as it can be interpreted as measuring
the risk-neutral expectation of integrated variance. This is not the case for a model with
jumps or nonnormality, and we need to use the original formula in Equation (3). Thus, for
the GSARV model, we have the following pricing formula for the VIX index:

Proposition 1. If the return of the S&P 500 index follows the GSARV model, then the

model-implied 1-month ahead VIX can be expressed as

VIXt = 100
√

252×
√
−2(r̄∗− r)+2ξ ∗u Vu,t(22)+2ξ ∗d Vd,t(22)

where Vu,t(n) and Vd,t(n) are the average expected upside/downside volatility over the next

7We follow the same interpolation methodology used in CBOE to calculate VIX2
U and VIX2

D for a specific
maturity T , i.e., 30 calendar days.
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n trading days in risk-neutral measure Q, given by:

Vj,t(n)≡
1
n

n

∑
i=1

EQ
t
(
h∗j,t+i

)
= (1−Γ j(n))h̄∗j +Γ j(n)h∗j,t+1, j = {u,d}

with

Γ j(n) =
1−
(

β j +α∗j γ∗2j

)n

n
[
1−
(

β j +α∗j γ∗2j

)] , h̄∗j =
ϖ∗j +α∗j

1−
(

β j +α∗j γ∗2j

) +ω
∗
j

Proof: see Appendix B.

Proposition 1 shows that the VIX pricing formula of GSARV is a combination of risk-
neutral expectations of future upward and downward volatility, and the weights are adjusted
based on the nonnormality of the type of each shock. In fact, when ω∗j → 0, i.e. z∗j,t

d→

N
(

0,h∗j,t
)
, we have r̄∗ → r f and ξ ∗j → 1

2 , then the VIX approaches the expectation of
integrated variance shown in Equation (6).

4.2 Risk-Neutral Semivariance Pricing Formula

This section shows how to derive the model-implied risk-neutral semivariance. Recall that
when Ft follows a diffusion process in Equation (4), we have the pricing formula for the
VIX defined on the dynamics of the volatility process using Equation (6). In the discrete-
time setting, we can calculate the VIX as the expected arithmetic average of the variance
over the next 22 trading days. The implementation is simple because the model-implied
expected variance is always analytical. When it comes to the risk-neutral semivariance
CIVU

T and CIVD
T expressed in Equation (11) and (12), things become complicated as it is

not straightforward to compute the conditional expectation of σ2
t I{Ft≤F0}. Therefore, we

resort to Equation (9) and (10) to derive our model-implied risk-neutral semivariance.

Proposition 2. Under the definitions in Equations (9) and (10), the model-implied risk-

neutral upside/downside variance can be expressed as

CIVU
t =

2
π

∫
∞

0
ℜ

[
e−ur(T−t)

(
1

u−1
− 1

u
− 1

u2

)
φt(u,T )

]
duI

CIVD
t =

2
π

∫
∞

0
ℜ

[
e−vr(T−t)

(
1

1− v
+

1
v
+

1
v2

)
φt(v,T )

]
dvI

where u,v are two complex numbers denoted by u = uR+ iuI and v = vR+ ivI , with uR > 1,

vR < 0, and uI,vI ∈ R. The operator ℜ[·] takes the real part of the complex number in

the square brackets. Function φt (s,T ) is the characteristic function of future cumulative
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returns, defined as

φt(s,T ) = EQ
t

[
exp

(
s

T−t

∑
i=1

Rt+i

)]
, Rτ = log(Sτ/Sτ−1)

Proof: see Appendix C.

Note that the pricing formulas of CIVU
t and CIVD

t provided in Proposition 2 are not
restricted to a specific model. It is possible to derive the model-implied risk-neutral up-
side/downside variance using these formulas if the closed-form expression of the charac-
teristic function of future cumulative returns is available. For the GSARV model, according
to Feunou & Okou (2019, Appendix A), φt(s,T ) is given by

φt(s,T ) = exp
(
D(s,T − t)+Cu(s,T − t)h∗u,t+1 +Cd(s,T − t)h∗d,t+1

)
where D(s,M), Cu(s,M), and Cd(s,M) can be obtained by an iterative relationship.

4.3 Model-Implied VIX Futures Pricing Formula

In this section, we investigate the VIX futures pricing performance of the GSARV model.
Following Zhu & Lian (2012, Proposition 1), the VIX futures price at time t with maturity
date T can be presented as the conditional expectation of the VIX under the risk-neutral
measure, i.e., F(t,T ) = EQ

t (VIXT ). Proposition 3 presents the GSARV model-implied
VIX futures prices.

Note that it is possible to extend our work to VIX option pricing, as the GSARV model
is an affine model with an analytical moment generating function (MGF) for future condi-
tional variance (see Appendix D), which is the key to derive the VIX option pricing formula
(Cao et al., 2020; Tong & Huang, 2021). However, a rigorous analysis of the VIX option
pricing performance of the GSARV model would be a stupendous feat and is not the main
goal of this paper. Therefore, we leave it for future research.

Proposition 3. If the return of the S&P 500 index follows the GSARV model, then the

model-implied VIX futures price can be expressed as

F(t,T ) =
50
√

252√
π

∫
∞

0

1− e2v(r̄∗−r)Ψu,t (−2vξ ∗u ,T )Ψd,t
(
−2vξ ∗d ,T

)
v3/2 dv

where Ψ j,t (s,T ), j = {u,d} is the conditional MGF of Vj,T (22), given by

Ψ j,t (s,T ) = EQ
t
[
exp
(
sVj,T (22)

)]
= exp

(
H j(s,T − t)+G j(s,T − t)h∗j,t+1

)
12



where H j(s,m), G j(s,m) can be obtained by the following iterative relationship:

H j(s,m+1) = H j (s,m)+G j (s,m)(ω∗j +ϖ
∗
j −ω

∗
j β j)

−
ω∗j α∗j γ∗2j G j (s,m)

1−2α∗j G j (s,m)
− 1

2
log
(
1−2α

∗
j G j (s,m)

)
G j (s,m+1) =

α∗j γ∗2j G j (s,m)

1−2α∗j G j (s,m)
+β jG j (s,m)

with initial conditions

H j (s,0) = s
(
1−Γ j(22)

)
h̄∗j , G j (s,0) = sΓ j(22)

Proof: see Appendix D.

5 Competing Models

5.1 Affine Realized Variance (ARV) Model

Similar to Feunou & Okou (2019), we focus on a restricted version of the GSARV model
by fixing ω ≡ ωu = ωd = 0 and hu,t = hd,t , by which we obtain

Rt+1 = r+
(

λ − 1
2

)
ht+1 +

√
htεt+1

ht+1 = ϖ +βht +α

(
vt− γ

√
ht

)2

RVt = ht +σ

[(
vt− γ

√
ht

)2
−1− γ

2ht

]
The innovations (εt ,vt) follow a standard bivariate normal distribution with the correlation
of ρ . This single-factor specification is identical to the affine realized variance (ARV)
model of Christoffersen et al. (2014). Its risk-neutralization process can be simply adapted
from the GSARV model.

5.2 Heston-Nandi GARCH (HN-GARCH) Model

As a widely cited benchmark option pricing model, the Heston-Nandi GARCH (HN-
GARCH) model proposed by Heston & Nandi (2000) is one of the very few discrete-time
volatility models that yield an analytical MGF for cumulative returns. The physical dy-
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namics of the HN-GARCH model are given by

Rt+1 = r+(λ − 1
2)ht+1 +

√
ht+1zt+1, zt+1

iid∼ N(0,1)

ht+1 = ω +βht +α

(
zt− γ

√
ht

)2
.

The corresponding risk-neutral dynamics with the variance-augmented pricing kernel of
Christoffersen et al. (2013) are given by

Rt+1 = r− 1
2h∗t+1 +

√
h∗t+1z∗t+1, z∗t+1

iid∼ N(0,1)

h∗t+1 = ω
∗+βh∗t +α

∗
(

z∗t − γ
∗√h∗t

)2
,

The model-implied MGF of future cumulative returns can be found in Christoffersen et al.
(2013) and its VIX futures pricing formula is provided in Wang et al. (2017).

5.3 Inverse-Gaussian GARCH (IG-GARCH) Model

As an extension to the HN-GARCH model, Christoffersen et al. (2006) proposed the
Inverse-Gaussian GARCH (IG-GARCH) model to allow for the conditional skewness of
future returns. As we are interested in models with asymmetry of distribution, we adopt
this model as another benchmark. The IG-GARCH model is given by

Rt+1 = r+ξ ht+1 +ηεt+1, εt+1 ∼ IG
(
ht+1/η

2)
ht+1 = ω +βht + γεt +

αh2
t

εt

where the shock εt+1 follows an inverse Gaussian distribution with the degree of freedom
ht+1
η2 . Following Cao et al. (2020), we use a two-dimensional pricing kernel to obtain the

risk-neutral process

Rt+1 = r+ξ
∗h∗t+1 +η

∗
ε
∗
t+1, ε

∗
t+1 ∼ IG

(
h∗t+1/η

∗2)
h∗t+1 = ω

∗+βh∗t + γ
∗
ε
∗
t +

α∗h∗2t
ε∗t

The model-implied MGF of future cumulative returns and the VIX futures pricing formula
can be found in Christoffersen et al. (2006) and Yang & Wang (2018), respectively.

14



6 Parameter Calibration

In our paper, as we decompose the market VIX into its upside and downside components,
which are all observable to us now, we directly calibrate the model’s risk-neutral parame-
ters by matching the model-implied risk-neutral semivariance (VIXm

U and VIXm
D) with the

corresponding observed market indexes (VIXU and VIXD). Specifically, the pricing error
is assumed to follow a bivariate normal distribution

eVIX
t =

(
eu,t

ed,t

)
=

(
VIXU,t−VIXm

U,t

VIXD,t−VIXm
D,t

)
iid∼ N

[(
0
0

)
,

(
σ2

u 0
0 σ2

d

)]

We assume that the pricing errors for different VIX components are independent, so the
sample log-likelihood function can be decomposed as follows:

`VIX =−1
2

T

∑
t=1

{
log
(
2πσ

2
u
)
+

e2
u,t

σ2
u

}
︸ ︷︷ ︸

`VIXU

+−1
2

T

∑
i=1

{
log
(
2πσ

2
d
)
+

e2
d,t

σ2
d

}
︸ ︷︷ ︸

`VIXD

where T is the number of trading days, and σ2
u and σ2

d can be estimated with the sam-
ple variance of pricing errors according to the first-order conditions to maximize the log-
likelihood function. In our empirical analysis, for the pricing of the VIX index and its
upside/downside components, we calibrate the model parameters by maximizing `VIX.

In this paper, we also focus on the pricing of the panel of VIX futures. Following Huang
et al. (2019), we assume that the pricing errors are independently and normally distributed
with zero mean and constant variance σ2

Fut; the sample log-likelihood function is given by

`Fut =−
1
2

N

∑
i=1

{
log
(
2πσ

2
Fut
)
+

e2
i,t

σ2
Fut

}

where N is the number of total VIX futures prices. This sample log-likelihood function is
used to calibrate the parameters used for pricing VIX futures.

7 Empirical Results

7.1 Data

We collect data on daily S&P 500 index return, realized semivariance, and the CBOE VIX
index. We construct the daily upside and downside VIX indexes using OTM SPX option
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prices based on formulas (13) to (16). To overcome the possible microstructure noise
problem, the realized variance is calculated using 5-minute returns, as well as the realized
semivariance. In line with Feunou & Okou (2019), these realized measures of volatility are
re-scaled to match the sample variance of daily close-to-close returns.

We also collect the panel of VIX futures prices.8 The VIX futures data start in March
2004, so our full sample spans approximately 17 years from March 31, 2004 to December
31, 2020. Following Zhu & Lian (2012), several filters are applied. First, VIX futures with
less than 5 days to maturity are removed. Second, futures with an open interest of less
than 200 contracts are excluded to avoid any liquidity-related bias. Finally, we keep all
VIX futures with a time to maturity of up to 90 days.9 The sample includes 4,241 daily
observations for the underlying data and 11,376 observations for VIX futures prices.

Table 1 reports the summary statistics of our data set. Panel A is for the time series
data. The S&P 500 returns exhibit a small negative skewness and a high level of kurtosis.
The realized variance and the VIX are both positively skewed and leptokurtic. The sample
mean of the realized variance is 15.145%, substantially smaller than the average VIX at
18.897%. Their difference reflects the (average) negative volatility risk premium. The
upside and downside realized semivariances have similar magnitudes. However, when it
comes to risk-neutral measures, sizable discrepancies arise for the upside and downside
components of the VIX. We find that compared with the upside VIX, the downside part
is much larger with a higher standard deviation. An interesting finding is that the sample
mean of the upside (downside) component of the VIX is smaller (larger) than the realized
upside (downside) variance, which means that there exists an average negative (positive)
premium on the upside (downside) variance.

Figure 1 plots the time series of the upside and downside components of the VIX from
January 1, 1996 to December 31, 2020.10 These two time series exhibit markedly higher
persistence, dispersion, positive asymmetry, and heavy tail than the distribution of returns.
In line with our findings in the summary statistics, the downside components are larger
than the upside part. For the VIX futures data in Panel B of Table 1, we find that (a) the
average prices are higher in longer maturities; (b) the standard deviation of futures prices
decreases almost monotonically with maturity; and (c) the average prices are much higher
when the level of basis (VIX level minus VIX futures price) increases; and (d) the VIX
futures market is always in contango as the basis is negative most of the time.

8We obtain the daily S&P 500 index from Yahoo Finance. The realized measures are collected from the
Realized Library of the Oxford-Man Institute, and the VIX index and VIX futures are from CBOE’s website.

9In our dataset, VIX futures with maturities of less than 90 days account for 89.1% of total trading volume.
10The SPX option prices used to construct the upside/downside components of the VIX are provided by

WRDS OptionMetrics; these are available from January 1996 onward.
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Table 1: Summary Statistics

Mean(%) Std(%) Skew Kurt Obs.

Panel A: S&P 500 returns, Realized Measures of Volatility, and CBOE VIX

Returns (annualized) 7.973 19.416 -0.563 17.355 4,241
Realized Variance (RV) 15.145 12.152 3.700 24.570 4,241
Upside RV 10.569 8.627 3.839 26.519 4,241
Downside RV 10.431 9.075 3.735 24.577 4,241
VIX 18.897 9.261 2.581 12.067 4,241
Upside VIX 10.214 5.178 2.561 12.110 4,241
Downside VIX 15.873 7.730 2.581 12.079 4,241

Panel B: CBOE VIX Futures

All VIX Futures 20.335 7.705 1.856 7.543 11,376

Partitioned by VIX level
VIX< 15 14.702 1.751 0.256 3.162 4,681
15≤VIX<30 21.715 4.304 0.563 2.426 5,613
30≤VIX 37.547 8.454 0.804 3.499 1,082

Partitioned by days to maturity
DTM<30 19.573 8.400 2.205 9.178 3,779
30≤DTM<60 20.363 7.435 1.691 6.336 3,701
60≤DTM 21.048 7.166 1.613 6.310 3,896

Partitioned by basis level
Basis<-2 19.761 5.735 1.239 5.202 4,388
-2≤Basis<0 18.281 6.263 1.815 6.893 4,776
0≤Basis 25.910 10.706 1.225 4.075 2,212

Note: Summary statistics for close-to-close S&P 500 index log returns, upside/downside realized
measures of volatility (in square root form), CBOE VIX, upside/downside VIX, and VIX futures
prices from March 31, 2004, to December 31, 2020. The reported statistics include the sample mean
(Mean), standard deviation (Std), skewness (Skew), kurtosis (Kurt), and number of observations
(Obs). DTM denotes the number of calendar days to maturity. Basis = VIX level minus VIX futures
price. Data sources: S&P 500 returns from WRDS; VIX index and VIX futures from the CBOE
website; realized measures from the Realized Library of Oxford-Man Institute; upside/downside
VIX computed using SPX option prices from WRDS OptionMetrics.

17



Figure 1: This figure shows the time series data of the upside and downside components of the
CBOE VIX from January 1, 1996 to December 31, 2020. The CBOE VIX index is decomposed
based on the formulas (13) to (16) using OTM SPX options from WRDS OptionMetrics.

7.2 Pricing VIX and its Upside/Downside Components

Table 2 presents the in-sample parameter calibration results for each model from March
2004 to December 2020 using VIX components. The estimated risk-neutral parameters,
robust standard errors, persistence of volatility dynamics, and log-likelihood are all re-
ported. Note that to make a concise table, for one-factor models, the reported parameter,
e.g. βu, is actually the parameter β . Several results can be observed. First, as indicated by
πQ, most models have a highly persistent volatility process under risk-neutral measures.
Second, for the IG-GARCH model, the parameter η∗ that generates conditional skewness
is negative and significant11.

The results for the GSARV model are quite interesting. First, shifting ARV to the
GASRV model does improve the empirical fit of the model, as illustrated by the increased
value of the log-likelihood functions. Second, although the sample means of the up-
side/downside variance in the physical measure are similar, their magnitude in risk-neutral
measure are markedly higher, as indicated by h̄∗u and h̄∗d . Third, from VRPu and VRPd , we
do find a negative (positive) premium on the upside (downside) variance. This means that
investors show asymmetric behavior toward good versus bad uncertainty: they like good
uncertainty but dislike bad uncertainty. This result is also consistent with the finding of

11When η∗ goes to zero, the inverse-gaussian distribution will converge to a normal distribution.
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Feunou et al. (2017). Fourth, the parameter α∗d is much larger than α∗u , which means that
the realized downside variance is more informative than its upside counterpart. Finally, the
correlations between return shocks and realized variance are much stronger for the down-
side part than for the upside part. In other words, the parameters controlling the dynamics
for upside and downside volatility show sizable differences. This means that it is important
to allow for distinct upside/downside variance dynamics.

In Table 3, we report the in-sample performance of pricing the VIX and its components.
We compare the model-based price, Pm

t , with the market-observed price, Pt . The resulting
full-sample root of mean square error (RMSE),

RMSE =

√
1
T

T

∑
t=1

(Pt−Pm
t )2, Pt ∈ {VIXt ,VIXU,t ,VIXD,t}

is reported in the first row of Table 3. For the IG-GARCH, ARV, and GSARV models, we
report the ratios of their RMSEs to the benchmark HN-GARCH model. Therefore, a ratio
less than one indicates better pricing performance relative to the HN-GARCH model.

In terms of overall performance, the models with realized measures (ARV/GASRV)
generally perform better than those based solely on daily returns (HN/IG-GARCH), with
a reduction in RMSE from 20.6% to 39.6%. Among these models, the GSARV model
has the best fit. The GARCH model with conditional skewness performance is better than
the HN-GARCH model, but the improvement is relatively small. When we compare the
pricing performance of different VIX components, the findings are quite interesting. First,
we find that the improvement of the ARV model is more significant in pricing the downside
component of the VIX than its upside counterpart. Recall that the ARV model only uses
the unsigned realized variance; therefore, these results mean that this conventional realized
variance does not provide enough information for the upside part of the implied variance.
Second, when it comes to the GSARV model, the improvements in the upside/downside
components of the VIX index are more balanced and larger. These results provide strong
evidence that the spread between upside/downside variance is the main driver of asymmetry
in stock price distributions.

7.3 Pricing VIX Futures

Table 4 presents the in-sample parameter calibration results from March 2004 to December
2020 using VIX futures prices. The main findings regarding the estimated parameters are
similar to those of Table 2, and we do not discuss them further here. Note that when fitting
the VIX futures prices, the correlations between return shocks and realized measures, i.e.

19



Table 2: Estimation Results Using VIX Components (2004-2020)

HN-GARCH IG-GARCH ARV GSARV

βu 0.620 -5.683 0.934 0.999
(0.001) (0.196) (0.048) (0.069)

α∗u 2.90E-06 1.90E+06 4.22E-08 1.36E-11
(1.48E-09) (3.64E+05) (5.75E-09) (2.72E-12)

γ∗u 3.56E+02 5.48E-06 1.20E+03 1.22E+02
(0.77) (2.89E-07) (3.67E-01) (4.97E-01)

σ∗u 6.39E-07 1.36E-09
(9.00E-08) (8.67E-08)

ρ∗u 0.442 0.408
(0.022) (0.023)

ζ ∗u 4.56E-05 -7.83E-06
(9.67E-06) (5.37E-07)

φ ∗u 0.874 0.756
(0.122) (0.188)

ω∗u 3.04E-08
(5.49E-09)

βd 0.973
(0.089)

α∗d 5.35E-08
(7.93E-09)

γ∗d 7.08E+02
(5.33E+01)

σ∗d 3.30E-07
(6.74E-08)

ρ∗d 0.922
(0.013)

ζ ∗d 3.84E-05
(3.87E-06)

φ ∗d 1.199
(0.440)

ω∗d 1.47E-05
(3.47E-06)

η∗ -1.14E-03
(1.94E-05)

h̄∗u 2.49E-04 2.51E-04 1.83E-04 5.09E-05
h̄∗d 1.34E-04

πQ
u 0.988 0.988 0.999 0.999

π
Q
d 0.999

VRPu 2.58E-05 -2.66E-05
VRPd 5.41E-05

`vixU -12492 -12359 -11611 -10338
`vixD -14625 -14536 -12967 -11938
`vix -27117 -26895 -24578 -22276

Note: Estimation results for the full sample period (March 31, 2004 to December 31, 2020) using
VIX components. The estimated parameters are reported with robust standard errors (in parenthe-
ses), πQ refers to volatility persistence under Q. The value of the log-likelihood function is reported
at the bottom of the table.
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Table 3: In-Sample VIX Pricing Performance (2004 - 2020)

RMSE Ratio to HN-GARCH

Model HN-GARCH IG-GARCH ARV GSARV

CBOE VIX 4.106 0.988 0.804 0.604

Partioned by VIX components

Upside VIX 2.455 0.980 0.822 0.599
Downside VIX 3.929 0.994 0.702 0.595

Note: This table reports the in-sample pricing performance of each model for the VIX (and its up-
side/downside components) from March 31, 2004 to December 31, 2020. We evaluate the model’s
pricing ability through the RMSE. For the IG-GARCH, ARV, and GSARV models, we report the
ratios of their RMSEs to the benchmark HN-GARCH model.

the parameters ρ∗u and ρ∗d , are unidentified, as the distribution of returns is not involved
explicitly in the dynamics of the two variances.

In Table 5, we report the in-sample VIX futures pricing performances. We compare the
model-based price, Fm

i , with the market-observed price, Fi. The full-sample RMSE,

RMSE =

√
1
N

N

∑
t=1

(
Fi−Fm

i
)2
,

is reported in the first row of Table 5. As in Table 3, for the IG-GARCH, ARV, and GSARV
models, we report the ratios of their RMSEs to the HN-GARCH model.

Table 5 presents the RMSE for VIX futures where the model parameters are given in
Table 4. In addition, the total RMSE for VIX futures pricing is decomposed by VIX level,
time to maturity, and basis of futures prices. The first dimension is linked to the volatility
level of the market. The second is linked to the model’s ability to track volatility dynamics
at different time horizons, and the last allows us to check the model’s performance under
different market conditions. We find that the models with realized measures still perform
better. Among these models, the GSARV model has the best fit, with a reduction in RMSE
of up to 23.4%. The HN-GARCH and IG-GARCH models are the two models without
realized measures. The nonnormality structure of IG-GARCH enables it to perform better
than the HN-GARCH model in periods with low VIX levels or in the deep contango market.
It is interesting to compare the ARV model and the GARV model, as the former is a special
case of the GARV model without splitting realized variance. The improvements resulting
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Table 4: Estimation Results Using VIX Futures (2004-2020)

HN-GARCH IG-GARCH ARV GSARV

βu 0.792 -4.938 0.995 0.999
(0.002) (0.191) (0.014) (0.040)

α∗u 1.06E-06 4.59E+06 3.48E-11 2.09E-09
(8.39E-08) (2.72E+05) (1.45E-09) (3.49E-12)

γ∗u 4.40E+02 1.84E-06 8.07E+01 1.42E+02
(0.09) (1.67E-07) (9.67E-01) (8.87E-01)

σ∗u 2.90E-07 3.49E-09
(9.67E-08) (7.67E-10)

ζ ∗u -5.08E-05 -2.52E-05
(9.67E-06) (7.37E-06)

φ ∗u 1.547 1.025
(0.122) (0.218)

ω∗u 2.12E-09
(7.37E-10)

βd 0.987
(0.078)

α∗d 1.45E-08
(4.36E-09)

γ∗d 6.80E+01
(4.33E-01)

σ∗d 3.63E-07
(3.78E-08)

ζ ∗d -8.67E-06
(1.37E-06)

φ ∗d 1.843
(0.423)

ω∗d 5.75E-06
(2.97E-07)

η∗ -7.17E-04
(2.17E-05)

h̄∗u 3.99E-04 4.14E-04 1.93E-04 5.44E-05
h̄∗d 1.38E-04

πQ
u 0.997 0.997 0.995 0.999

π
Q
d 0.987

VRPu 3.51E-05 -2.33E-05
VRPd 5.82E-05

`Fut -29017 -28687 -28120 -26095

Note: Estimation results for the full sample period (March 31, 2004 to December 31, 2020) using
VIX futures prices. The estimated parameters are reported with robust standard errors (in parenthe-
ses), πQ refers to volatility persistence under Q. The value of the log-likelihood function is reported
at the bottom of the table.

22



Table 5: In-Sample VIX Futures Pricing Performance (2004 - 2020)

RMSE Ratio to HN-GARCH

Model HN-GARCH IG-GARCH ARV GSARV

Full-sample 3.101 0.971 0.924 0.766

Panel A: Partioned by VIX level

VIX< 15 2.097 0.911 0.806 0.627
15≤VIX< 30 2.752 0.962 1.006 0.854
30≤VIX 6.543 1.006 0.895 0.735

Panel B: Partitioned by days to maturity

DTM<30 3.528 0.984 0.897 0.680
30≤DTM<60 2.833 0.961 0.929 0.830
60≤DTM 2.895 0.963 0.958 0.819

Panel C: Partitioned by basis level

Basis<-2 2.460 0.959 1.035 0.878
-2≤Basis<0 2.685 0.951 0.902 0.720
0≤Basis 4.679 0.992 0.874 0.729

Note: This table reports the in-sample VIX futures pricing performance of each model from March
31, 2004 to December 31, 2020. We evaluate the model’s pricing ability through the RMSE. For
the IG-GARCH, ARV, and GSARV models, we report the ratios of their RMSEs to the benchmark
HN-GARCH model. We summarize the results by VIX level, Basis (VIX level minus VIX futures
price), and days to maturity. DTM denotes the number of calendar days to maturity.
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Table 6: Out-of-Sample VIX Pricing Performance (2009 - 2020)

RMSE Ratio to HN-GARCH

Model HN-GARCH IG-GARCH ARV GSARV

CBOE VIX 4.591 0.976 0.762 0.574

Partioned by VIX components

Upside VIX 2.578 0.982 0.840 0.608
Downside VIX 4.423 0.976 0.685 0.559

Note: This table reports the out-of-sample VIX futures pricing performance of each model from
April 1, 2009 to December 31, 2020. The out-of-sample performance evaluation is based on a
rolling window of 1,000 trading days, with the parameters updated on a monthly basis. We evaluate
the model’s pricing ability through the RMSE. For the IG-GARCH, ARV, and GSARV models, we
report the ratios of their RMSEs to the benchmark HN-GARCH model. We summarize the results
by VIX level, Basis (VIX level minusVIX futures price), and days to maturity. DTM denotes the
number of calendar days to maturity.

from the use of unsigned realized variance are concentrated in cases where the VIX level
is extremely high/low, VIX futures are short term, and the market is in backwardation.
The GSARV model based on signed semivariance outperforms the ARV model in every
subcategory, especially in low-volatility market conditions, when the upside component
contains rich information about the underlying process.

7.4 Out-of-Sample Pricing Performance

When considering models with realized measures, the number of parameters increases for
the ARV and GSARV models. It is important to check if the superior performance of these
models does not merely result from in-sample overfitting. As in Huang et al. (2019), we
conduct an out-of-sample pricing analysis based on a rolling window of 1,000 trading days,
with the parameters updated on a monthly basis. We evaluate the out-of-sample pricing
errors from April 1, 2009 to December 31, 2020 (the observations in the first 5 years are
used as a presample to obtain the first set of parameters).

In Tables 6 and 7, we report the out-of-sample VIX and VIX futures pricing perfor-
mance results, respectively. We find that the results are very similar to those reported in
Tables 3 and 5. The GSARV model still generates the smallest pricing error, and the main
findings remain. Based on these results, we can conclude that the improvements resulting
from splitting realized variance are not caused by in-sample overfitting.
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Table 7: Out-of-Sample VIX Futures Pricing Performance (2009 - 2020)

RMSE Ratio to HN-GARCH

Model HN-GARCH IG-GARCH ARV GSARV

Full-sample 2.928 0.978 0.948 0.799

Panel A: Partioned by VIX level

VIX< 15 2.554 0.936 0.800 0.737
15≤VIX< 30 3.040 0.992 1.039 0.867
30≤VIX 3.826 1.003 0.809 0.563

Panel B: Partitioned by days to maturity

DTM<30 3.272 0.991 0.940 0.765
30≤DTM<60 2.702 0.969 0.942 0.827
60≤DTM 2.794 0.968 0.963 0.816

Panel C: Partitioned by basis level

Basis<-2 3.552 0.982 1.004 0.840
-2≤Basis<0 2.327 0.963 0.651 0.614
0≤Basis 2.031 0.968 0.843 0.705

Note: This table reports the out-of-sample VIX futures pricing performance of each model from
April 1, 2009 to December 31, 2020. The out-of-sample performance evaluation is based on a
rolling window of 1000 trading days, with the parameters updated on a monthly basis. We evaluate
the model’s pricing ability through the RMSE. For the IG-GARCH, ARV, and GSARV models, we
report the ratios of their RMSEs to the benchmark HN-GARCH model. We summarize the results
by the VIX level, Basis (VIX level-VIX futures price), and days to maturity. DTM denotes the
number of calendar days to maturity.

25



8 Conclusion

This paper investigates the role of realized semivariance in pricing the CBOE VIX and VIX
futures, using the GSARV model of Feunou & Okou (2019). We obtain the closed-form
pricing formula for both the VIX and VIX futures, and show that the new model provides
superior pricing performance, both in-sample and out-of-sample. We further analytically
derive the pricing formulas for the upside/downside components of the VIX. Such decom-
position shows that the information gains from the conventional realized variance are more
significant on pricing the downside component of the VIX, while the new model incorpo-
rating signed realized semivariance provides a larger and balanced improvement in both
upside/downside components of the VIX. Our results provide strong evidence supporting
the spread between upside/downside variance as the main driver of asymmetry in stock
price distributions.
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A The correction terms in CBOE VIX

For function log(F) and any positive value X0 ≥ 0, we have

EQ
0 [log(FT )]− log(X0) = EQ

0

(
FT −X0

X0

)
− erT

[∫ X0

0

P0(K)

K2 dK +
∫

∞

X0

C0(K)

K2 dK
]

When X0 is equal to the forward price F0, we obtain Equation (2), and the true MFIV is
given by

MFIV≡ 2erT
[∫ F0

0

P0(K)

K2 dK +
∫

∞

F0

C0(K)

K2 dK
]
=−2EQ

0

[
log

FT

F0

]

However, if we choose X0 as F̃0 instead of F0, then the resulting M̃FIV is

M̃FIV≡ 2erT

[∫ F̃0

0

P0(K)

K2 dK +
∫

∞

F̃0

C0(K)

K2 dK

]
=−2EQ

0

[
log

FT

F̃0
− FT − F̃0

F̃0

]

Then we have

1
2

(
MFIV− M̃FIV

)
= E0

(
FT −F0

F0
− log

FT

F0

)
−E0

(
FT − F̃0

F̃0
− log

FT

F̃0

)

= log
(

F0

F̃0

)
−
(

F0

F̃0
−1
)
≈−1

2

(
F0

F̃0
−1
)2

So we have

MFIV≈ M̃FIV−
(

F0

F̃0
−1
)2

and this forms the foundation of the correction term in calculating the CBOE VIX.
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B Proof of Proposition 1

According to Equation (3), we have

MFIVt ≡ 2er(T−t)
∫ +∞

0

Mt(K)

K2 dK =−2EQ
t

[
log
(

FT

Ft

)]
=−2EQ

t

[
T−t

∑
i=1

(Rt+i− r)

]

where the risk-neutral dynamics of log return Rt+1 are given by

Rt+1 = r̄∗−ξ
∗
u h∗u,t+1−ξ

∗
d h∗d,t+1 + z∗u,t+1− z∗d,t+1

Let n = T − t, then we have

MFIVt = −2EQ
t

[
n

∑
i=1

(Rt+i− r)

]

= −2EQ
t

[
n

∑
i=1

(r̄∗− r−ξ
∗
u h∗u,t+i−ξ

∗
d h∗d,t+i)

]

= n

[
−2(r̄∗− r)+2ξ

∗
uE

Q
t

(
1
n

n

∑
i=1

h∗u,t+i

)
+2ξ

∗
dE

Q
t

(
1
n

n

∑
i=1

h∗d,t+i

)]

Finally, the 1-month ahead (i.e. n = 22) VIX is given by

VIXt =
100
√

252
22

×MFIVt = 100
√

252×
√
−2(r̄Q− r)+2ξ ∗u Vu,t(22)+2ξ ∗d Vd,t(22)

where Vu,t(n) and Vd,t(n) are defined as

Vj,t(n)≡
1
n

n

∑
k=1

EQ
t

(
h∗j,t+k

)
, j = {u,d}

Now we can begin to derive the formula of Vj,t(n). First, we rewrite the dynamics of
h∗j,t+1 as

h∗j,t+1 = ϖ
∗
j +β j

(
h∗j,t−ω

∗
j
)
+α

∗
j

(
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)
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where the conditional expectation of the last innovation term is zero. So we have

Vj,t(n) = h̄∗j +
1
n

n

∑
k=1

(
β j +α

∗
j γ
∗2
j
)k−1 (
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)
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with
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C Proof of Proposition 2

Denote the future cumulative return by

R̃T ≡ log
(

ST

S0

)
=

T

∑
t=1

Rt , Rt ≡ log
(

St

St−1

)

Because Ft = Ster(T−t), we have
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=
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e−rT = exp
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Rt− rT

)
= exp
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)
, Rt ≡ log

(
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)

C.1 Deriving the pricing formula of CIVU

Then Equation (9) becomes

CIVU = 2EQ
0

[(
FT

F0
−1− ln

FT

F0

)
I{FT≥F0}

]
= 2EQ
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[(
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where f (R) is the conditional probability density function of future cumulative return R̃T

in risk-neutral measure. By Fourier inverse transform, f (R) can be expressed as

f (R) =
1
π

∫
∞

0
ℜ
[
e−uR

φ(u,T )
]

duI, φ(u,T )≡ EQ
0
[
euR] (C.2)

where u is a complex number denoted by u = uR + iuI . The operator ℜ[·] takes the real
part of the complex number in the square brackets. Function φ (u,T ) is the characteristic
function of future cumulative returns R̃. Combining Equations (C.1) and (C.2), we have

CIVU = 2
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) 1
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After using Fubini’s theorem, we can change the order of integration. Then Equation (C.3)
becomes
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Under the condition of convergence that uR > 1, the integral is

∫ +∞

rT

(
eR−rT −1−R+ rT

)
e−uRdR = e−urT

∫ +∞

0
(es−1− s)e−usds

= e−urT
∫

∞

0

(
e(1−u)s− e−us− se−us

)
ds

= e−urT
(

s
u

e−us +
1

1−u
e(1−u)s +

1
u

e−us +
1
u2 e−us

)∣∣∣∣+∞

0

= e−urT
(

1
u−1

− 1
u
− 1

u2

)
So we have

CIVU =
2
π

∫
∞

0
ℜ

[
e−urT

(
1

u−1
− 1

u
− 1

u2

)
φ(u,T )

]
duI

C.2 Deriving the pricing formula of CIVD

Similar to Equation (C.3), we have

CIVD =
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π

∫
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Under the condition of convergence that uR < 0, the integral is
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D Proof of Proposition 3

According to Schürger (2002), the expectation of the square root function of a random
variable x can be expressed as

E
(√

x
)
=

1
2
√

π

∫
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3
2

dv

Using this identity, the VIX futures price can be written as
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where Ψ j,t (s,T ) is the conditional MGF of Vj,T (22) defined by

Ψ j,t (s,T ) = EQ
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exp
(
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,

and the last equality comes from the assumption that shocks to upside and downside volatil-
ity, vu,t and vd,t , respectively, are independent.

From Feunou & Okou (2019, Appendix A), the conditional MGF of h∗j,t+2 is given by

EQ
t
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= exp

(
A j (s)+B j (s)h∗j,t+1

)
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with
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E The measurement equation of the GSARV model in Q-
measure

According to Feunou & Okou (2019, Appendix C), the measurement equation in Q-measure
is given by
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where ε̃ j,t is a zero-mean innovation defined by
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As h∗j,t can be written as h∗j,t = ϑ j + ς jh j,t , the formula above becomes
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Then we have

RV ∗j,t ≡ ζ
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35


	E2022013
	CCER working paper 1
	Introduction
	Model
	The Realized Semivariance
	GSARV Model
	Risk Neutralization

	The CBOE VIX and its Decomposition
	MFIV: Theoretical Arguments
	VIX Decomposition: Risk-Neutral Semivariance

	Model-Implied Pricing Formulas
	VIX Pricing Formula
	Risk-Neutral Semivariance Pricing Formula
	Model-Implied VIX Futures Pricing Formula

	Competing Models
	Affine Realized Variance (ARV) Model
	Heston-Nandi GARCH (HN-GARCH) Model
	Inverse-Gaussian GARCH (IG-GARCH) Model

	Parameter Calibration
	Empirical Results
	Data
	Pricing VIX and its Upside/Downside Components
	Pricing VIX Futures
	Out-of-Sample Pricing Performance

	Conclusion
	The correction terms in CBOE VIX
	Proof of Proposition 1
	Proof of Proposition 2
	Deriving the pricing formula of CIVU
	Deriving the pricing formula of CIVD

	Proof of Proposition 3
	The measurement equation of the GSARV model in Q-measure


